« Carbohydrate Intake Targets for Athletes: Grams or Percent? | Main | Strength Training for Women: Hormonal Considerations »
Tuesday
Jul262011

Endurance Performers and Iron-Deficiency

By: Karoly Piko.
Chief Physician at the Department of Emergency Medicine
Site Link: Coachr.

Karoly, Piko M.D.: Chief Physician at the Department of Emergency Medicine, Joso Andros County Hospital, President of the Hungarian Association of Emergency Medicine since 1995, Head Physician of the Hungarian National Olympic and Track and Field teams since 1980. Votfous publications in the fields of emergency medicine and sport injuries.

Endurance performers are susceptible to iron-deficiency because the absorption of iron cannot balance the losses incurred through training. Therefore, a preventive daily dose of 105 mg of ferrous sulphate is necessary, especially for young women. The symptoms of iron-deficiency often remain undiscovered. The haematological parameters of training iron-deficient and anaemic women improve when a daily 210mg ferrous sulphate dose is applied. In endurance performers the effects of iron-deficiency on the synthesis of neurotransmitters, cognitive function, mitochondrial function and protein metabolism remain topics for future research studies.

A large number of sports medicine studies have looked at iron-deficiency anemia in athletes. Many of them have proved the role of iron in blood synthesis, in the activation of enzymes necessary for synthesis, the catabolism and function of neurotransmitters (dopamine, serotonin and noradrenalin); and in the regeneration of cells. Table 1 summarizes the symptoms of iron-deficiency and it is important to emphasize that the symptoms are not due to anemia.

Some of the literature argues that performers---especially endurance athletes---are mildly iron-deficient, which places limits on their performance potential. In other research the contrary finding was put forward so the role of iron substitution and preventive iron therapy is often contested.

The author has examined iron-deficient, iron-deficient anaemic and non-iron deficient endurance athletes and also reviewed the recent related literature and compared it with other findings. 

Methods 

Endurance performers from athletics and triathlon were examined. In the morning pre-prandial blood sample haematological parameters were examined (ferritin, haemoglobin, transferrin, red blood cell volume and iron levels). The participants were divided into three groups:

a. The first group consisted of male and female athletes, who received no iron preparations.

b. In the second group participants received 105mg of ferrous sulphate daily.

c. In the third group known iron-deficient, anaemic female athletes were studied.

In each group the mathematical average of every parameter was determined. After twelve weeks of training the laboratory studies were repeated.

Results

Figure 1 summarizes the development of laboratory parameters in fifteen male athletes (mean age 18 years), who did not receive iron therapy. In these cases anaemic did not develop, in two cases latently deficient iron levels were noticed. In this group the author observed a tendency towards low iron levels.

 

Figure 2 shows the parameters of fifteen female athletes (mean age 20.2 years), who did not receive iron therapy. In six cases iron-deficiency and, in two cases, iron-deficiency anaemic was observed.

 

Figure 3 shows the parameters of 20 male competitors (mean age 21.2 years), who received 105mg ferrous sulphate daily during the period of training. After three months neither iron-deficiency, nor iron- deficiency anaemia developed.

Figure 4 shows the parameters of long distance running and triathlon female athletes who received 105mg daily doses of iron sulphate.

Figure 5 reviews the haematological parameters of 8 female competitors (mean age 20.5 years), known to have iron-deficiency anaemia, who received 210mg ferrous sulphate daily. Our results show that, in spite of training, the propensity for iron-deficiency and anaemia decreased.

Discussion

For decades many studies have looked at the role of iron-deficiency and its effects on performance. Iron absorption and loss should reflect a dynamic equilibrium (Fig. 6.). In the case of sports performers loss of iron is increased by many factors such as perspiration, gastrointestinal and urogenital bleeding during training, and inefficient iron intake. The so-called "runner anaemia" is the result of the increased fragility of the red blood cells, according to some experts. Other studies question that theory by illustrating the similar haematological levels found in swimmers. 

The factors above are especially important in endurance athletes. It is evident that, in the case of iron-deficiency, the organism tries to compensate by increasing the absorption of iron. It is not clear however, whether the organism can maintain the new equilibrium.

The symptoms of iron-deficiency should be separated from those of anaemia. Because they appear long before anaemia is evident and so remain unrecognized. (see Table I.); the symptoms of the patient are often regarded as a result of increased training.

In spite of the fact that there is controversy over the relationship between iron-deficiency and diminished performance (in mild iron-deficiency no deterioration in performance was noticed), it is difficult to imagine that low iron induced neurotransmitter dysfunction would not negatively influence CNS function or even dysfunction of myogen cell metabolism, both leading to a reduced ability to perform.
It seems that in the case of endurance sports preventive iron supplementation is necessary, because our organism cannot cope with the increased loss of iron. There is no need to fear an overdose of iron, because only the required amount of Iron is absorbed, the rest is eliminated in faeces.

Conclusion

  1. The studies of iron metabolism in endurance athletes reveal the following:
  2. In endurance athletes iron-deficiency is common and anaemia is often observed.
  3. The haemostatus of these athletes should be monitored at least every three months.
  4. A preventive daily intake of 10Smg ferrous sulphate seems to be necessary; over dosage was not observed.
  5. A therapeutic dosage (210mg/day) improved the haemostatic parameters in spite of training. There was no need for intravenous application.

The effect of iron on cognitive functions, neurotransmitter synthesis, protein metabolism and the metabolism within the mitochondria needs future evaluation.

Bibliography

ASHENDEN MJ, DOBSON GP, HAHN AG
Sensitivity of reticulocyte indices to iron therapy in an intensely training athlete. In: Br J Sports Med ( ENG-LAND) Sep. 199832 (3) p259-6o ISSN: 0306- 3674

ASHENDEN MJ; MARTIN DT; DOBSON GP; MACKINTOSH C; HAHN AG
Serum ferritin and anaemia in trained female ath- letes. In: Int J Sport Nutr (UNITED STATES) Sep 1998 8 (3) p223-9ISSN: 1050-1606

BERMEJO B; OLONA M; SERRA M; CARRERA A; VAQUEJ
Prevalencia de ferropenia en la poblacion laboral femenina en edad fertil. In: Rev Clin Esp (SPAIN) Jul1996 196 (7) p446-50 ISSN: 0014-2565

BURKE L
Practical issues in nutrition for athletes. In: J Sports Sci (ENGLAND) Summer 1995 13 Spec No pS83-90 ISSN: 0264-0414

CLARKSON PM
Micronutrients and exercise: anti-oxidants and minerals. In: J Sports Sci (ENGLAND) Summer 199513 Spec No pS11-24 ISSN: 0264-0414

ESCANERO J F; VILLANUEVA J;RoJO A; HERRERA A; DEL DIEGO C; GUERRA M
Iron stores in professional athletes throughout the sports season. In: Physiol Behav (UNITED STATES) Oct 1997 62 (4) p 811-4 ISSN:0031-9384

GARZA D; SHRIER I; KOHL HW 3RD; FORD P; BROWN M; MATHESON GO
The clinical value of serum ferritin tests in endurance athletes. In: Clin J Sport Med (UNITED STATES) Jan 1997 7 (1) p46-53 ISSN: 1050-642X

GASTMANN U; PETERSEN KG; BOCKER J; LEHMANN M
Monitoring intensive endurance training at moderate energetic demands using resting laboratory markers failed to recognise an early overtraining stage. J Sports Med Phys Fitness ( ITALY) Sep. 1998 38 (3) p 188-93ISSN:0022-4707

KHALED S; BRUN JF; WAGNER A; MERCIER J, BRINGER J; PREFAUT C;
Increased blood viscosity in iron-depleted elite athletes. In: Clin Hemorheol Microcirc (NETHERLANDS) Jul1998 18 (4) p 309 -18 ISSN: 1386-0291

NIELSEN P; NACHTIGALL D
Iron supplementation in athletes. Current recommendations. Sports Med (NEW ZEALAND) Oct 199826 ( 4) p207-16 ISSN: 0112-1642

NUVIALA RJ; CASTILLO MC; lAPIEZA MG; ESCANERO JF
Iron nutritional status in female karatekas, hand- ball and basketball players, and runners. In: Physiol Behav (UNITED STATES) Mar 199659 (3) p449-53 ISSN:0031-9384

SAKURADA K;TANAKAJ
{Sport-anaemia: studies on haematological status in high school boy athletes}. In: RINSHO BYORI (JAPAN) JUL 199644 (7) p616-21ISSN: 0047-1860

References (1)

References allow you to track sources for this article, as well as articles that were written in response to this article.

Reader Comments

There are no comments for this journal entry. To create a new comment, use the form below.
Member Account Required
You must have a member account on this website in order to post comments. Log in to your account to enable posting.