Tuesday
Jul262011

Strength Training for Women: Hormonal Considerations

By: C. Harmon Brown, M.D.
Chair of USATF's Sports Medicine and Sciences Committee.
From: Published in Track Coach: No137
Site Link: Coachr.

 

Dr. Brown, Chair of USATF's Sports Medicine and Sciences Committee, referred to this in a note to us as a "think piece." He calls for coaches and scientists to continue this kind of study. This is a well-documented article, which may lead the interested coach to investigate further. We welcome response to this important article.

Strength training to enhance sports performance and improve fitness is now a common means of exercise for women. It has progressed to the point that there is now a world championships in weightlifting for women.

For many years resistive exercises for women were shunned for fear of these athletes becoming "masculinized" through the use of heavy weights. However, early studies showed that women were able to exhibit considerable improvements in strength with only minimal degrees of muscle hypertrophy (2). These researchers pointed out that the likelihood of major muscle hypertrophy from resistance training was small in comparison to males, as women have blood levels of the anabolic hormone testosterone which are only 5-10 per cent of those of men.

Many subsequent studies have borne out these early findings. Further, resistance training itself does not appear to increase basal levels of testosterone in women, and strength gains are not correlated with blood testosterone levels (3-5).

The endocrine aspects of exercise science have increased greatly in recent years, especially in the areas associated with resistance training. Assessing the roles of the various hormones as to the cause-and- effect relationships in response to any exercise stimulus can be very complex.
Hormonal levels in blood and tissues are influenced by their production from the parent organ, clearance from the blood by the liver, kidneys, and other peripheral tissues, and their binding to specific receptor sites in target organs.

In addition, steroidal hormones such as androgens, adrenal hormones, and ovarian hormones circulate in the blood bound to specific carrier proteins, with only a tiny fraction in the "free" form which is available to tissues.

Evaluation of the numerous studies which have been carried out concerning the responses of the endocrine system are further complicated by the variety of test protocols which have been utilized. Aerobic vs. resistance loading produces different hormonal responses, and even seemingly similar studies may yield different results. The athlete's state of training and nutrition can also influence the metabolic and hormonal outcomes.

There are at least three anabolic hormones which are responsible for muscle hypertrophy: testosterone (and dihydrotestosterone), pituitary growth hormone (GH), and insulin-like growth factor I (IGF-I), formerly called somatomedin-C.

TESTOSTERONE

Initially, studies focused on the role of testosterone in response to an exercise stimulus, especially resistive loading. It soon became apparent that, in addition to different basal levels between men and women, the response to exercise is quite different. Following a bout of resistive exercise, the male's testosterone level rises considerably, while in women the values change little, if at all.
Further, the disposition of testosterone in the body differs between the sexes. In males, about 50 per cent of the testosterone is bound to receptors in muscle, while only about 10 percent is cleared in this manner in women. However, women do show a greater response of the weaker adrenal androgen, androstenedione.

Concerns that resistive training in women raises basal testosterone levels, or that higher basal testosterone levels are accompanied by greater strength gains, have not been borne out.

GROWTH HORMONE

Growth hormone responds to both aerobic and resistive exercise. Growth hormone stimulates muscle growth by facilitating the transport of amino acids across cell membranes, activating DNA transcription in the muscle cell nucleus, thus increasing the amounts of RNA and protein synthesis.

INSULIN-LIKE GROWTH FACTOR

Insulin-like growth factor I (IGF- I) is a potent anabolic factor. It is believed that growth hormone's effects are mediated through IGF-I. IGF-I is stored in the liver and peripheral tissues. It is released slowly (16-28 hours) after growth hormone stimulation. In those situations in which it was measured, IGF-I levels have risen little or not at all after exercise bouts which have been sufficient to elevate growth hormone concentrations. Further, increases in IGF-I did not seem to correlate with the rises in GH. The reasons for this are not clear.

It would appear from the foregoing that the growth hormone IGF-I complex plays a significant role in the development of muscle hypertrophy and strength in women. Hence, strength programs for women should focus on maximizing growth hormone production.

ELEVATING GH LEVELS

In a series of elegant studies, W. Kraemer, et al. (9-12) examined the hormonal responses to a wide variety of resistive training protocols in both men and women. By varying the resistive load (5-RM vs. l0-RM) and the rest interval (1 minute vs. 3 minutes), they were able to demonstrate considerable differences in the response of several hormones.

In summary, the greatest rises in GH occurred with the protocol in which eight different exercises were used, with three sets of each exercise. The resistance was l0-RM, or approximately 70-75 percent of the l-RM, and the rest interval was one minute between each exercise and between each set.

THE EFFECT OF THE MENSTRUAL CYCLE

Similar responses were seen in both men and women, with the women having somewhat higher baseline GH levels, and slightly greater exercise responses. However, in all prior studies by these and other authors, women were studied only during the follicular phase (first half) of the menstrual cycle.
Only recently has the effect of the menstrual cycle on various hormonal responses to resistive training been assessed (6). RR Kraemer, et al. (7, 8) studied the changes in hormonal response which occurred during both the follicular and luteal phases of the cycle in the same group of subjects. These women were subjected to a moderate exercise regimen of three sets of 10 repetitions of four different exercises with a 2- minute rest interval. There was a significantly higher GH response during the luteal phase, as well as much higher estradiol levels. Other studies have suggested that the female hormone estradiol facilitates the release of growth hormone.

TAILORING PROGRAMS TO THE MENSTRUAL CYCLE

These studies suggest that strength training programs for women should be tailored to each athlete's menstrual cycle. Although there have been no studies to validate the effect of these cyclic hormonal variations on muscle growth and strength development, the research findings are strongly suggestive that such a study would be of considerable value.

Until such a study is done, however, imaginative strength coaches should consider devising strength development programs which take into account these hormonal fluctuations which occur during the menstrual cycle. Such considerations might be especially valuable during the basic "hypertrophy" mesocycle of a strength development program.

These programs should consider:

  1. During the luteal phase (second half) of the menstrual cycle strength training should consist of "moderate intensity" loading, using 3-4 sets of 8-10 repetitions at 65- 75% of the 1- RM, done three times a week. These exercises should involve the large muscle groups of the upper and lower extremities and trunk, i.e., bench press, squats, power cleans, leg press, sit-ups, dead lifts, etc.
  2. The rest interval between sets and exercises should be no more than two minutes, and preferably shorter.
  3. A similar routine also may be of value during the follicular phase (first half) of the cycle, although the estradiol and GH responses may be lower.
  4. f the athlete is using oral contraceptives, no phasic change in GH response can be expected (1) unless the oral contraceptive is of the "tri-phasic" variety. Several studies of athletes using oral contraceptives have been done. These have yielded conflicting results as to whether there is a greater-than-expected GH response, probably because of variations in hormonal strength and type, and in exercise protocol.
  5. During the "strength" phase of the training cycle (lower repetitions, higher loading), i.e., four sets of five repetitions at 80% of l-RM, a lesser response of estradiol and GH is to be expected, and the training program need not be adapted to the menstrual cycle.

It is hoped that this paper will stir some thought and even controversy in the strength-training community and will lead to further studies and some empirical trials by innovative coaches and scientists.

Tuesday
Jul262011

The Function of the Mid-Torso In Sports Activities

By: Adrian Faccioni.
Lecturer in Sports Coaching, University of Cabberra, Australia.
From: Published in Track Coach: No133 - Fall 1995.
Site Link: Coachr.

1. Anatomy & Kinesiology.

 

2. THE FUNCTION OF THE MID-TORSO IN SPORT ACTIVITIES

Most sports encompass relatively large movements of the trunk. Since the trunk segment has a large mass, great demands are exerted on the trunk musculature, particularly if the trunk movements are to be performed with high accelerations. Also the trunk has a critical role in the maintenance of stability and balance when performing movements with the extremities.

Sporting activities requiring running or jumping place pressure on the lumbo-pelvic region (that includes the 4th and 5th lumbar vertebra), the pelvis and the hips as this region becomes the hub of weight bearing. The superior forces (from torso, head and arms) meet the inferior forces transmitted from the ground through the lower extremity.

No part of the body is more vulnerable to tissue strains and sprains. This point is the center of all body movements and efficient body movements (as required in sprinting) can be critical in maintaining the stability of an anatomically correct body position, that of the Abdominal muscle groups, erector spinae (making up the mid-torso region) and the gluteus maximus (Porterfield 1985).

A study by Comerford, et al. (1991) analyzed the mid-torso muscle groups to see which group had the greatest impact on lumbo-pelvic stabilization. Results indicated that oblique muscle groups were the most important for this stabilization (especially from pelvic rotation forces) as found in high-speed sprint movements.

To assist in sprint acceleration, powerful arm drive will allow for a more rapid and powerful leg extension. The limitation with this technique is that large rotational forces can be placed upon the mid-torso musculature. If there is inadequate stability in this region, rotation of the pelvis will occur to counteract shoulder rotation resulting in poor technique and inefficient force application; therefore a slower athlete will be the result.

At an elite level, upper body strength is emphasized in sprint athletes out with a concurrent development of mid-torso strength to allow efficient usage of this additional strength during high-speed sprinting movements.

The naturally occurring wide pelvis of the mature female also leads to the above problem and mid-torso strength is absolutely vital if the coach wishes to maximize efficient technique at maximal speed in his/her female sprint athletes. Hip rotation is required to maximize stride length, but if excessive, then poor technique will result and if combined with a poor pelvic tilt, then major inefficiencies will result, leading to either poor performance, injuries or both.

Apart from resistance to rotational forces, there must be support of the pelvis to minimize excessive anterior pelvic tilt. An excessive anterior tilt indicates poorly toned mid-torso musculature and this can increase the lordotic curve (lower back arch) in the lumbar region. This can increase the strain on the facet joints in the vertebral column and can result in the iliopsoas going into spasm to protect the lower core from injury.

Also increased pressure on the neural plexus from the lumbar region can result in nerve irritation (e.g. sciatic nerve) which can then affect the optimal functioning of lower limb musculature that can have deleterious effects if maximal effort work (e.g., 100% sprinting) is performed (such as hamstring strains).

Excessive anterior tilt of the pelvis can limit hip range of motion leading to excessive hip extension and limited hip flexion. This technical position limits stride length and increases ground contact time (which is undesirable for increases in speed performance) due to the athlete's center of gravity being lower than required for maximal sprinting speed.

The demands of sprinting require the abdominals to function in a way that leads to optimal torsional stabilization during explosive contractile sequences, matching the needs of performing up to 5 strides per second (such as that which occurs in an elite sprint race). During sprinting at this rate, the lower limb velocity can reach 80km/h; therefore the stresses placed upon the pelvic stabilizers are extreme and can only be accommodated for with extremely well-developed abdominal (including oblique) musculature (Francis 1992).

3. WAYS OF DEVELOPING THE MID-TORSO REGION

The development of a strong mid-torso should be the goal of all speed/power athletes and the preferred procedures for maximizing strength in this region is by the common sit-up. Kinesiologically, the sit-up and its many variations are the ideal exercises to develop the vertebral flexor and rotational muscles (namely the RA, EO & IO).

The mid-torso musculature consists of postural muscles with a high percentage of slow-twitch muscle fibers. Their function is to be able to hold contractions for long periods to maximize trunk stability (Nordel and Frankel 1989, p. 104).

To best condition this region, variations on the sit-up can be used. To maximize abdominal development and minimize stress placed upon the lower back, exercises should be performed slowly (1-4 seconds per repetition) while working on all muscle groups in the mid-torso region.

These exercises should also be performed through a range of motion that minimizes lower back strain, and maximal control is required. When compared to the stress placed upon the lumbar region when standing (assume this is measured as 100%), the full sit-up (Figure 5), even with knees bent and feet flat on the floor, creates a stress equal to 200%.

This load can be decreased if the sit-up is only partial (first 30' from floor) and lessened even more if a reverse sit-up is performed (pelvis lifted off the floor) (Figure 6).

The reverse curl has been shown to increase the activation on the EO and IO as well as the RA (Nordin & Frankel 1989, p. 202). A modification to maximize load and minimize stress upon the lumbar region is to perform a partial crunch as well as a reverse sit-up concurrently (Figure 7) and hold each maximal contraction for four seconds. This minimizes the use of assistant muscle groups and quickly fatigues the musculature targeted in only 5-15 repetitions.

Sit-ups performed fast and or with the feet supported have:

  1. The relative contribution of the hip flexors increasing while the relative contribution of the abdominal muscles decreasing (Sevier 1969).
  2. Increased stress placed upon the lumbar region of the spine.
  3. Decreased load on the abdominal musculature due to increased momentum from the upper body.

The major limitation of the sit-up is the functional application of mid-torso strength transferable from a sit-up routine to the pelvic stabilization required under the stresses of a sprint or any high-speed movement performance. Personal observation of a variety of athletes has highlighted that even the development of very strong mid-torso regions from situps and squat type activities do not automatically transfer to the pelvic and mid-torso positions required to maximize sprinting performance.

Many athletes are strong enough through their mid-torso region but have not developed correct motor patterns to be able to stabilize the body while having rapid upper and lower limb movements (e.g., arm and leg movements in sprinting). To develop the specific strength qualities or transfer mid-torso strength to the required strength positions can be achieved both in a weight room and the field/court/ track situation.

WEIGHT ROOM MID-TORSO TRAINING

The best adaptation in the mid-torso musculature results from slow isotonic training in combination with isometric training in a range of nonspecific and sprinting-specific body positions.

Once the athlete can perform acceptable slow isotonic (with movement) mid-torso exercises, more sprint specific positioning can be introduced that requires the athlete to place his hips in the necessary posterior tilt position while placing stress upon the mid-torso musculature. Examples of these exercises are:

  1. Abdominal hollowing (Figure 8)
  2. Isometric prone (Figure 9)
  3. Single leg raise with lumbar support (Figure 10).

Abdominal hollowing

To perform abdominal hollowing the athlete can be either in a supine position or standing. The technique is to contract the abdominals "INWARDS" as hard as possible while maintaining normal rib cage positioning. This can be assisted by placing a finger into the belly button and try to push the abdominal wall inwards while maximally contracting. The athlete should continue to breath as normally as possible throughout the exercise; each contraction can be held for up to 60 seconds.

Isometric prone

To perform an Isometric prone exercise the athlete begins on elbows and knees and then takes the knees off the ground while trying to maximally contract the abdominal musculature upwards. If any stress is felt on the lower back, this is an indication that the abdominal wall is not being totally contracted. This position should be held 15-60 seconds depending upon the condition of the athlete.

Single leg raise with lumbar support

To perform a single leg raise with lumbar support, the athlete places the tips of his fingers under the lower back and maximally contracts the back against the fingers. Then one leg at a time is slowly lowered (up to 10 seconds per leg) while maintaining a constant pressure on the fingers. As soon as the pressure decreases, this indicates that the abdominal musculature is beginning to fail and the hip flexors have been activated. At this point if the pressure cannot be regained, the athlete either finishes that repetition or brings the leg slowly back to the starting position until lower back pressure can be regained and then continues the repetition.

These are still "PASSIVE" isometric exercises (done slowly) that once a high competency is reached can be followed by "ACTIVE" isometric exercises that are highly sprint specific.

Examples of these exercises are:

  • Rapid hip extension/hip flexion (Figure 11)
  • Modified Russian Twist with/ without arm swing. The 'MRT' is accomplished while reclining with the buttocks on a raised, fixed seat and with the toes/feet hooked under a rigid padded bar. In this position, the back, shoulders and head are not supported. Then twist at the waist while swinging an arm in the direction of the rotation. (Figure 12)

 

ON TRACK/FIELD MID-TORSO TRAINING

The weight room training is purely a precursor to what must be achieved at the "on field" situation. This is where true application of the strength gain can be both assessed and true transfer can be completed.

This goal can be achieved in two parts.

  • The correct body positioning can be further applied by several "running drills" that are aimed at correct running form (which usually means correct body posture through the mid-torso).

The "A", modified single leg "A", "B", heel flick and high knee drills (Figure 13) are all aimed at increasing the tilting and rotational stresses that are placed upon the mid-torso musculature. These drills can be done slowly at first and progressively sped up as the athlete's ability to hold the correct position improves.

 The modified single leg "A" places high levels of stress upon the mid-torso region to hold the pelvis in place while the athletes perform very explosive hip flexion and extension movements in a single leg form.

  • The most specific transfer to sprinting is to have the athlete sprint while concentrating on the positioning drilled previously. Sprints should be less than maximal at first, progressing only as the athlete is able to maintain the correct running position. As soon as pelvic stability decreases, the drill should be stopped.

External resistance to increase learning can be in the form of a towing device that the athletes place around their mid-torso and the pressure on this region through each repetition reinforces the control required and increases the level of control as the athlete is having to work harder to maintain good body position under this increased resistance. (Figure 14)

It is important that the resistive load be small enough so that the athlete is able to maintain proper sprint acceleration posture. Bending forward at the waist should be avoided.

In summary, the mid-torso is the link between the upper and lower body and must allow the transfer of strength movements and allow powerful movements of both the upper and lower body to complement each other. The best way to achieve this is to develop mid-torso strength through traditional ways (situps) but ensure functional strength (by more specific mid-torso training methods) is being attained throughout the athlete's training year.

 

Monday
Jul252011

Core Stability: The Inner Unit

By: Paul Chek.
From: A new frontier in abdominal training: IAAF/NSA 4.99.
Site Link: Coachr.
Article Link: The Inner Unit.

ALSO SEE: Core Stability: The Outer Unit.

A new frontier in abdominal training

AUTHOR

Paul Chek is an expert in the fields of corrective exercise and high performance conditioning and is the founder of the C.H.E.K Institute in San Diego, California. For over fifteen years he has traveled around the world lecturing, consulting and giving seminars. Paul Chek has been a consultant to the Los Angeles Chiropractic College, the Chicago Bulls, the Denver Nuggets, the US Army Boxing team, Australia's Canberra Raiders and the US Air Force Academy. 

ABSTRACT

The author states that abdominal exercises can be performed in various ways and asks if the exercises commonly practiced really improve the functionality of the abdominal muscles. From his own studies with patients and clients who performed a high volume of abdominal routines, he concludes that the usual theories of explanation and treatment for back pain are wrong. He recommends the concept of "The Inner Unit", which is a term describing the functional synergy between specific abdominal muscle groups. He describes ideas for Inner Unit conditioning and concludes that Inner Unit training provides the essential joint stiffness and stability needed to give the large prime movers of the body a working foundation.

How many ways can you do an abdominal exercise? Well, if you have been reading the muscle tabloids for the past 20 years you could probably come up with well over 100. Today we have classes devoted to nothing but TRASHING people's abdominal muscles, complete with every variation of crunch, jack knife, side bend and leg raise exercise known to man. Are these classes, or these exercises, really improving the way you look or function, or reducing your chances of back pain?

To find the answers to these questions, in 1992 I began investigating the correlation between abdominal exercises performed, exercise volume and the postural alignment, pain complaints and overall appearance of my clients. To ensure objective observations of postural alignment and responses to specific exercises, I designed and patented calibrated instruments to measure structural misalignment.
In the first year of recording such information as forward head posture, rib cage posture, pelvic tilt and overall postural alignment, it became evident that those performing high volume sit-up/crunch exercise programmes were not showing promising results (see Figure 1)! Those attending "Ab Blast" classes and/or performing high repetition/high volume abdominal routines were not only having a harder time recovering from back pain, they were also showing little or no improvement in their postural alignment.

While studying patients and clients who performed high volume abdominal routines, it became very evident that there was a common link. About 98% of those with back pain had weak lower abdominal and transversus abdominis muscles, while those with no history of back pain were frequently able to activate the transversus abdominis and scored better on lower abdominal strength and coordination tests. To alleviate back pain, I frequently had to suggest that clients stay completely away from any form of sit-up or crunch type exercises. When this advice was adhered to, and exercises for the lower abdominal and transversus abdominis were practiced regularly, back pain either decreased or was completely alleviated and posture routinely improved.

One can always find some "experts" in the health and fitness industries who state that "there is no such thing as lower abdominal muscles," while others suggest that the best treatment for back pain is to exercise on machines that isolate the lower back muscles. My clinical observations lead me to believe both theories are wrong.

In 1987, "Clinical Anatomy of the Lumbar Spine" by Nikolai Bogduk and Lance Twomey was published. This book is important because it was Bogduk who made the first clinical observations of how the abdominal and back muscles worked together as a functional unit. This occurs via the connection of the transversus abdominis and internal oblique muscles to the envelope of connective tissue (thoraco-Iumbar fascia) surrounding the back muscles (Figure 2).

A few years ago, Australian researchers Richardson, Jull, Hodges and Hides began making significant headway in understanding how the deep abdominal wall worked in concert with other muscles, creating what they would later call THE INNER UNIT.

The Inner Unit

The Inner Unit became accepted as a term describing the functional synergy between the transversus abdominis and posterior fibers of the obliquus intern us abdominis, pelvic floor muscles, multifidus and lumbar portions of the longisssimus and iliocostalis, as well as the diaphragm (Figure 3). Research showed that the inner unit was under separate neurological control from the other muscles of the core. This explained why exercises targeting muscles such as the rectus abdominis, obliquus extern us abdominis and psoas, (the same muscles exercised in traditional abdominal conditioning programmes common all over the world) were very ineffective at stabilising the spine and reducing chronic back pain.

Exercising the big muscles (prime movers) was not providing the correct strengthening for such essential small muscles as the multifidus, transversus abdominis and pelvic floor muscles. When working properly, these muscles provide the necessary increases in joint stiffness and stability to the spine, pelvis and rib cage to provide a stable platform for the big muscles. In a sense, as the big muscles (outer unit) become stronger and tighter, the delicate balance between the inner and outer units becomes disrupted. This concept is easier to understand using the pirate ship model (Figure 4).

The mast of the pirate ship is made of vertebra which are held together (stiffened) by the small guy wires running from vertebra to vertebra. just like the role of the multifidus (a member of the inner unit) in the human spinal column.

Although the big guy wires (representing the outer unit) are essential to hold up the mast of the pirate ship (our spine), they could never perform this function effectively if the small segmental stabilizers (inner unit) were to fail. By viewing the pirate ship's large guy wires, it becomes easy to see how developing too much tension from the overuse of exercises such as the crunch, could disrupt the posture of the mast, or spinal column in the case of a human.

To better apply the concept of the pirate ship, let's examine how the inner and outer units work in a common situation such as picking dumbbells up from the floor in the gym (Figure 5). Almost in synchrony with the thought, "Pick up the weights from the floor," the brain activates the inner unit, contracting the multifidus and drawing in the transversus abdominis. This tightens the thoraco-Iumbar fascia in a weight belt-like fashion (Figure 2). Just as this is happening, there is simultaneous activation of the diaphragm above and the pelvic floor below. The effect is to encapsulate the internal organs as they are compressed by the transversus abdominis. This process creates both stiffness of the trunk and stabilises the joints of the pelvis, spine and rib cage, allowing effective force transfer from the leg musculature, trunk and large prime movers of the back and arms to the dumbbells.

When the inner unit is functioning correctly, joint injury is infrequent, even under extreme loads such as pushing a car, tackling an opponent in football or lifting large weights in the gym. When it is not functioning correctly, activation of the large prime movers will be no different than a large wind hitting the sail of the pirate ship in the presence of loose guy wires running from vertebra to vertebra in the mast. Any system is only as strong as its weakest link!

Inner Unit Conditioning Tips

The first and most important step towards reducing back pain, improving posture and the general visual appearance, is to stop all crunch and/or sit-up type exercises until you become proficient at activating your inner unit! Although the assessment procedures for the inner unit are beyond the scope of this article, the interested reader may find detailed information in the video series "Scientific Core Conditioning". With inner unit dysfunction being extremely common in today's working and exercising population, it is safe to assume that everyone needs to start with novice exercises, even the most elite of athletes.

To begin conditioning the transversus abdominis, use the 4 Point Transversus Abdominis Trainer (Figure 6). For conditioning of the multifidus and related stabiliser and postural muscles, the Horse Stance exercises may be used (Figures 7-9).

 ALSO SEE: Core Stability: The Outer Unit.

Monday
Jul252011

Core Stability: The Outer Unit

By: Paul Chek.
From: IAAF/NSA 1-2.00.
Site Link: Coachr.
Article Link: The Outer Unit.

AUTHOR

Paul Chek is an expert in the fields of corrective exercise and high performance conditioning and is the founder of the C.H.E.K Institute in San Diego, California. For over fifteen years he has traveled around the world lecturing, consulting and giving seminars. Paul Chek has been a consultant to the Los Angeles Chiropractic College, the Chicago Bulls, the Denver Nuggets, the US Army Boxing team, Australia's Canberra Raiders and the US Air Force Academy.

ABSTRACT

The author stated that abdominal exercises can be performed in various ways and asks if the common exercises really improve the functionality of the abdominal muscles. In this article the author explains first, the anatomy of the outer unit, second, he describes the function of the four sling systems of the outer unit and, finally, he demonstrates exercises targeting one or all of the sling systems in a methodical manner.

In the previous article titled The Inner Unit A New Frontier In Abdominal Training, we discussed the function of the transversus abdominis, multifidus, diaphragm and pelvic floor musculature with regard to their significant functions as stabilizers of both the spine and extremities. The main message of this article was that stabilization of the core via the inner unit must always precede force generation by the core or extremities.

The scope of this article will be, first, to explain the anatomy of the outer unit, second, to describe the function of the four sling systems of the outer unit and, finally, to demonstrate exercises targeting one or all of the sling systems in a methodical manner.   

Functional Anatomy of the outer unit

The outer unit consists primarily of phasic muscles (Table 1), although there are many muscles such as the oblique abdominals, quadratus lumborum, hamstrings and adductors which serve a dual role, acting in a tonic role as stabilizers and a phasic role as prime movers. To be technically correct, we may say that outer unit functions are predominantly phasic functions (geared toward movement).  

Superficial to the musculature of the inner unit are the outer unit systems, sometimes referred to as slings. The Deep Longitudinal System (DLS) is composed of the erector muscles of the spine and their investing fascia. The spinal erectors communicate with the biceps femoris through the sacrotuberous ligament of the pelvis and to the lower extremity via the peroneus longus muscle (Figure 1).

The Posterior Oblique System (PS) or sling consists primarily of the latissimus dorsi and the contralateral gluteus maxim us (Figure 2).    

The Anterior Oblique System (AS) consists of a working relationship between the oblique abdominal muscles and the contralateral adductor musculature and the intervening anterior abdominal fascia (Figure 3).   

The Lateral System (LS) (Figure 4) consists of a working relationship between the gluteus medius, gluteus minimus and ipsilateral adductors (1,3). Porterfield and DeRosa (3) indicate a working relationship between the gluteus medius and adductors of one leg with the opposite quadratus lumborum. The author's clinical experience strongly suggests that the oblique musculature is synergistic with the quadratus lumborum during lateral sling functions such as those seen in Figure 4.  

    

THE OUTER UNIT SYSTEMS IN ACTION

The deep longitudinal and posterior systems

 To better understand how the DLS and PS function, we will explore their actions in what is certainly one of our most primal movement patterns, gait (walking). While walking, there is a consistent low level activation of the inner unit muscles to provide the necessary joint stiffness to protect the joints and support the actions of the larger outer unit muscles. Recruitment of the inner unit muscles will fluctuate in intensity as needed to maintain adequate joint stiffness and support, as the inertial forces of limb movement, kinetic forces and intradiscal pressures increase.  

As we walk, we swing one leg and the opposite arm forward in what is termed counter rotation. Just prior to foot strike, the hamstrings become active . The DLS, uses the thoracolumbar fascia and paraspinal muscle system to transmit kinetic energy above the pelvis, while using the biceps femoris as a communicating link between the pelvis and lower extremity. For example, Vleeming shows that the biceps femoris communicates with the peroneus longus at the fibular head, transmitting approximately 18% of the contraction force of the biceps femoris through the fascial system into the peroneus longus.  

Interestingly, the anterior tibialis, like the peroneus longus, attaches to the plantar side of the proximal head of the first metatarsal. The significance of this relationship is appreciated when considering that there is recruitment of the biceps femoris and the anterior tibialis just prior to heel strike in concert with the peroneal muscles, which act as dynamic stabilizers of the lower leg and foot. Dorsiflexion of the foot and activation of the biceps femoris just prior to heel strike, therefore, serves to "wind up" the thoracolumbar fascia mechanism as a means of stabilizing the lower extremity and storing kinetic energy that will be released during the propulsive phase of gait (4). 

As you can see by observing Figure 2, just prior to heel strike the gluteus maximus reaches maximum stretch as the latissimus dorsi is being stretched by the forward swing of the opposite arm. Heel strike signifies transition into the propulsive phase of gait, at which time the gluteus maximus contraction is superimposed upon that of the hamstrings. Activation of the gluteus maximus occurs in concert with activation of the contralateral latissimus dorsi, which is now extending the arm in concert with the propelling leg. The synergistic contraction of the gluteus maximus and latissimus dorsi creates tension in the thoracolumbar fascia, which will be released in a pulse of energy that will assist the muscles of locomotion, reducing the metabolic cost of gait.

The anterior oblique system

The concept of the Anterior Oblique System (AS Figure 3) appears to have become popular very recently. A review of the literature shows that spiral concept of muscle-joint action was understood as integral to human movement and corrective exercise by Robert W. Lovett, M.D. and by anatomist Raymond A. Dart in the early 1900's.  

To clarify the point that movement originates in the spine (core), Gracovetsky describes torque generation by an S-shaped spinal column. He exemplifies the point that the legs are not responsible for gait, but merely instruments of expression, by showing that a man with no legs whatsoever can walk. In both the examples of what Gracovetsky calls the spinal engine, it is evident that the kinetic and potential energies of the oblique abdominal musculature, in concert with other core muscles, are primarily responsible for creating the torque that drives the spinal engine; the oblique abdominal being best situated to create rotary torque.  

The oblique abdominals, like the adductors, serve to provide stability and mobility in gait. When looking at the EMG recordings of the oblique abdominals during gait and superimposing them upon the cycle of adductor activity in gait demonstrated by Inman, it is clear that both sets of muscles contribute to stability at the initiation of the stance phase of gait, as well as to rotating the pelvis and pulling the leg through during the swing phase of gait. As the speed of walking progresses to running, activation of the anterior oblique system becomes more prominent.  

The AS is very important, particularly in sprinting, where the limbs and torso must be accelerated. The demands on the AS are great in multi-directional sports such as tennis, soccer, football, basketball and hockey. In such sporting environments the AS must not only contribute to accelerating the body, but also to changing direction and decelerating it. One need not see an EMG study to appreciate the strong contribution of the AS; just ask anyone that has experienced an abdominal strain! Accelerating, decelerating and changing directions are all activities that result in immediate pain in the presence of both abdominal and groin strains or tears.  

AS functions can be appreciated when running in sand. Because sand gives away during the initiation of the stance and propulsive phases of gait, the impulse timing of ground reaction forces is disrupted, resulting in poor use of the thoracolumbar fascia, or what Margaria calls the smart spring system. The result is that you must muscle your way through the sand. Many athletes having performed sand sprints, will note abdominal fatigue in the following day or two after the sand sprints. This is due to the increased activation of the AS to compensate for the lost kinetic, potential and muscular energy, which is usually stored and released in part by the thoracolumbar fascia system. Gracovetsky states that wearing soft soled sporting shoes, as athletes often do today, can easily disrupt the body's timing mechanism, which could very well result in increased work and may result in injury.  

During explosive activities, such as swinging a sledge hammer (Figure 5), the AS serves critical function, stabilizing as in gait, yet assisting in propelling the hammer. Trunk flexion and rotation, as a closed chain movement atop of the lead leg, is generated by the adductors as they assist in trunk flexion and internal rotation of the pelvis and assisted by gravity. Activation of the adductors occurs in concert with activation of the ipsilateal (stance leg side) internal oblique and contralateral (throwing arm side) external oblique, pulling the trunk in the necessary direction to propel the shoulder/arm complex. The forces of the shoulder/arm unit summate with those of the legs and trunk below to produce a powerful hammer swing. Here one can clearly see the phasic functions of the AS at work.

 The lateral system

Porterfield and De Rosa (3) suggest that functional anatomy dictates that the lateral system provide essential frontal plane stability. While walking, the LS will be active at heel strike (initiation of stance phase), providing frontal plane stability. This is accomplished by a force-couple action between the gluteus medius and minimus pulling the iliac crest toward the stable femur while the opposite quadratus lumborum and oblique abdominal musculature assist by elevating the ilium. This action is necessary to help create the freeway space needed to swing the leg in gait, particularly when you consider the terrain we ambulated across during developmental years. 

During functional activities such as participating in Step class (Figure 4) or simply walking up stairs (Figure 6), the LS plays a critical role, stabilizing the spine in the frontal plane. Stability in the frontal plane is very important to the longevity of the lumbar spine because frontal plane motions of the lumbar and thoracic spine are mechanically coupled with transverse plane motions; excessive amounts of either will quickly aggravate spinal joints.    

The LS provides stability that not only protects the working spinal and hip joints, but is a necessary contributor to overall stability of the pelvis and trunk. Should the trunk become unstable, the diminished stability will compromise ones ability to generate the forces necessary to move the swing leg quickly, as required by many work and sports environments. Attempts to move the swing leg, or generate force with the stance leg during gait and other functional activities, can easily disrupt the sacroiliac joints and pubic symphysis and cause kinetic dysfunction in joints throughout the entire kinetic chain.     

A classic example of distal expression of LS dysfunction was illustrated by Sahrmann. She described a lateral shift of an athlete's center of gravity over the subtalar joint while going through the stance phase of gait (Trendelenburg's Sign) resulting in an inversion ankle sprain. Since attending her course in 1992, the author has found gluteus medius weakness and contralateral low back pain due to quadratus lumborum overload common among athletes exhibiting recurring ankle sprain.  

THE OUTER UNIT AS A STABILIZING SYSTEM

Although the outer unit is thought of as a phasic system, (a system for moving the body) by most, it does provide crucial stabilizer functions. We must remember that the muscles of the inner unit are relatively small, with less potential to generate force than the large outer unit muscles.

The inner unit muscles are concerned with providing joint stiffness and segmental stability. They work for extended periods of time at low levels of maximal contraction. The outer unit muscles, while very well oriented for moving the body, are also very important to stability, often serving to protect the inner unit muscles, spinal ligaments and joints from damaging overload. For example, consider this common scenario:

The coach instructs two football players to engage in an oblique medicine ball toss drill. One player is much bigger and stronger than the other, as the other player finds out as he attempts to catch the 8 kg. (17.5 lbs.) medicine ball traveling at him at over 60 kph (40mph)! The smaller player does not have the strength in his outer unit to decelerate the ball and is forced into end-range trunk flexion and rotation, traumatizing his lower lumbar discs, ligaments and intrinsic spinal muscles (multifidus, rotatores, intertransversarii and interspinales).

Regardless of how well conditioned the inner unit of the smaller player may have been, lack of strength in his outer unit relative to his partner, or the demands of the task at hand resulted in inner unit overload and injury! With careful scrutiny of most activities in the work or sports environment, you will find that good eccentric strength in the outer unit systems is critical to protecting the inner unit from damage. Protection of the inner unit through proper conditioning of the outer unit is a worthy goal when one considers that optimal proprioception is dependant upon the health of the inner unit muscles and the joints they protect!   

A MODERN APPROACH TO EXERCISING THE OUTER UNIT

Now that we have taken a detailed look at the anatomy and function of the outer unit, it should be clear that modern exercise technology has taken us a long way from conditioning the outer unit systems the way they were designed to work! For example, can you see any way the following exercises condition the outer unit systems in such a way that they could provide carryover to most functional work or sport activities?    

  • Crunch on Floor
  • Crunch Machines of all types
  • Sit-up
  • Hanging Leg Raises of All Types
  • Bench Press
  • Leg Press
  • Seated Row Machines?

I could go on, filling the page with exercises that do very little to enhance function. Many of you will no doubt recognize the above exercises as traditional bodybuilding exercises. What has happened? Only a few years back in the days of Bill Pearl, bodybuilders were building beautiful physiques with functional exercises like squats, lunges, barbell rows, cable rows, deadlifts and the like. Today, we are overrun by the machine era, the era of the aesthetic emotional hook so carefully used by the machine manufacturers to convince you that you will look better using their machines.    

Our bodies were not designed to exercise on machines, they were designed to function in the wild. We are designed for three-dimensional freedom, not two dimensional guided, unrealistic exercise that encourages muscle imbalance between those muscles used to stabilize and those used in a phasic manner for any given movement. The motor programs developed on machines are of little use to the body for anything other than pushing or pulling the levers of that very machine during that very exercise. This limits functional carryover to those that operate cranes, excavators, bulldozers, and buses for a living; they are about the only people that must apply force to levers in a seated, supported, two-dimensional environment.    

OUT WITH THE NEW AND IN WITH THE OLD!

Using your new understanding of the outer unit systems, carefully analyze such functional pushing and pulling exercises as the single arm standing cable row (Figure 7) and standing single arm cable push (Figure 8). You will see all outer unit systems being conditioned simultaneously, jU5t as they are used in most of our work and sport environments. 

 

 

Medicine ball exercise, like free weight training, was much more popular in the 40s, 50s, 60s, and 70s than it is today. Great athletes of those decades used exercises such as the oblique medicine ball toss and push-pass, not to mention almost 100 other variations of medicine ball exercises.  

The Swiss Ball can be used to effectively condition the outer unit systems in three-dimensional movement while providing unloading opportunities for those recovering from injury. For example, analyze the Supine Lateral Ball Roll (Figure 9) and see if you can determine which outer unit systems are being used and categorize them in the order of demand during this exercise. This will be a great start toward a better understanding of functional exercise.  

  

Conclusion

The outer unit consists of four systems, the deep longitudinal, posterior oblique, anterior oblique and lateral. These systems are dependent upon the inner unit for the joint stiffness and stability necessary to create an effective force generation platform. Failure of the inner unit to work in the presence of outer unit demand often results in muscle imbalance, joint injury and poor performance. The outer unit cannot be effectively conditioned in patterns of movement that carryover to function when using modern bodybuilding machines. Effective conditioning of the outer unit should include exercises that require integrated function of the inner and outer units, using movement patterns common to any given client's work or sport environment.

 

Sunday
Jul242011

Muscle Architecture, Mechanics and Specific Adaptation to Resistance Training

By: Thrasivoulos Paxinos, M.Sc., Ph.D. Athens College of Sport Sciences.
From: AS PUBLISHED IN: PROCEEDINGS OF THE INTERNATIONAL TRACK & FIELD COACHES ASSOCIATION.
Site Link: Coachr.

Introduction

Skeletal muscle represents the largest organ of the body. It makes up approximately 40% of the total body weight and it is organized into hundreds of separate entities, or body muscles, each of which has been assigned a specific task to enable the great variety of movements that are essential to normal life:
Each muscle is composed of a great number of subunits, muscle fibers, that are arranged in parallel and typically extend from one tendon to another. In order to understand the performance of muscle it is essential to know the properties of the individual fibers. With the laboratory techniques now available it is possible to study the contractile behavior of intact single fiber. The single fiber preparation offers the possibility to study the mechanical performance under strict control of sarcomere length. This is of particular importance as the sarcomere length reflects the state of overlap between the two sets of filaments that constitute the main functional elements of the contractile system.

Architecture of Muscle

The muscle fiber is composed of tightly packed subunits, myofibrils, that fill up most of the fiber volume. They contain the contractile element and are therefore the structures within the muscle that are responsible for force generation and active shortening. The basic functional unit of the myofibril is the sarcomere. Many sarcomeres packed together in series form the myofibril. The principal elements in the myofibrillar structure are two sets of filaments of different thickness that show a highly ordered, segmental arrangement that corresponds to the striated appearance of the myofibril.
1. The thicker filaments are made up of a fibrous protein, myosin (Hanson and Huxley, 1953; Hasselbach, 1953).
2. The second set of filaments are mainly built up of a globular protein, actin.

Interaction of these two filaments is the primary cause of muscle contraction and therefore force production. The degree of interaction is controlled by tropomyosin and troponin which are helicaly based on the actin filament.

Sliding Filaments Theory

Our knowledge about the structural organization of the contractile system in the form of two sets of filaments, stems from the pioneering work of H. B. Huxley and J. Hanson (Hanson and Huxley, 1953; Huxley, 1953; Huxley and Hanson, 1954). Their observation that the thick and thin filaments remain constant in length during muscle contraction, while the region of overlap between the two filaments changes with the fiber length, led these authors to suggest that muscle contraction is based on a sliding motion of the two sets of filaments. This idea has now gained general acceptance.
According to this view, the driving force for the sliding motion is generated by the myosin cross-bridges within the region where the thick and thin filaments overlap. The experimental evidence suggests that the myosin bridges make repeated contacts with adjacent thin filaments and that each such contact makes a contribution to the force developed during contraction. This occurs when the fiber is stimulated and calcium is released into the myoplasm from its storage site in the sarcoplasmic reticulum. Adenosine triphosphate offers the energy for the continuous action of the cross-bridges.

Motor Units

The smallest subunit that can be controlled is called a motor unit because it is separately innervated by a motor axon. Neurologically, the motor unit consists of:

  • A synaptic junction in the ventral root of the spinal cord
  • A motor axon, and
  • A motor end place in the muscle fibres. 

Under the control of the motor units are as few as three fibers or as many as 2000, depending on the fineness of the control required. Muscles of the fingers, face and eyes have a small number of shorter fibers in a motor unit, while the large muscles of the leg have a large number of long fibers in their motor units.

Each muscle has a finite number of motor units, each of which is controlled by a separate nerve ending. Excitation of each is an all-or- nothing event. The electrical indication is a motor unit action potential; the mechanical result is a twitch of tension. An increase in tension can therefore be accomplished in two ways:

1. By an increase in stimulation rate for that motor unit, or
2. By the excitation (recruitment) of an additional motor unit.

Recruitment of motor units follows the size principle, which states that the size of the newly recruited motor unit increases with the tension level at which it is recruited (Henneman, 1974). This means that the smallest unit is recruited first and the largest unit last. In this manner low tension movements can be achieved in finely graded steps. Conversely, those movements requiring high forces but not needing fine control are accomplished by recruiting the larger motor units. When maximum voluntary contraction is needed, all motor units will be firing at their maximum frequencies. Tension is reduced by the reverse process: successive reduction of firing rates and dropping out of the larger units first (Milner-Brown and Stein, 1975).


Two types of motor units are present in the muscle.

It must be added that there have been many criteria and varying terminologies associated with the types of motor units present in any muscle. Biochemists have used metabolic or staining measures to categorize the fiber types. Biomechanics researchers have used force (twitch) measures (Milner-Brown et, al., 1973), and electrophysiologists have used electromyographic indicators (Warmolts and Engel, 1973; Milner- Brown et, al., 1975).

Furthermore, a muscle with a higher percent- age of type II fibers reacts with shol1er electro- mechanical delay, time to peak tension and relaxation. Persons having this type of muscles, produce higher maximal speeds and a higher level of force for a cel1ain speed of contraction.

Muscle Cross-Sectional Area

Muscle force is defined as the maximum tension produced during one contraction. This is related to the number of myosin cross-bridges, in parallel formation, which are able to interact with actin and produce tension. Each cross-bridge is a separate factor of force production. When air is present and calcium passes into the fiber, the cross-bridges stal1 a cyclic procedure of attachment to actin, tension production and relaxation. This cyclic procedure is not the same for the different types of muscles (it depends on the type of the heavy meromyosin of the cross-bridges). Scientific results also show that different types of cross-bridges produce various levels of tension. Also, even during maximum contraction, only a pal1 of the whole of cross-bridges is active.
The maximum force that a muscle can generate is directly related to its cross-sectional area (Morris, 1949; Tricker and Tricker, 1967; Ikai and Fukunaga, 1970; Norman, 1977). Hypothesizing that the number of myofibrils of muscle fibers are not significantly different, cross-sectional area is an accurate way to foresee the maximum tension of the muscle.

Mechanical Model of the Muscle

Three elements compose the mechanical model of the muscle influencing its mechanical behavior and effecting contraction:

  1. The contractile element
  2. The series elastic element, and
  3. The parallel elastic element

This model could be useful in order to explain the dynamic properties of the muscle and to understand its mechanical behavior.

The contractile element represents the muscle fibers, which are the active part of the muscle and are competent to produce tension. The parallel elastic element represents the connective tissue surrounding each muscle fiber, groups of fibers and the whole of the muscle. Furthermore, the elastic element represents the elasticity of cross- bridges (Huxley, 1974). They lengthen and respond like a spring. The series elastic element refers mainly to the tendons of the muscle which are placed "in series" with the contractile and parallel elastic elements. Finally, friction is represented on the model by a viscous piston used to explain the passive viscoelastic characteristics of muscle influenced by intracellular and extracellular fluids of muscle fibers.

Types of Muscle Contraction

The term contraction can be thought of as the state of muscle when tension is generated across a number of actin and myosin filaments. Depending on the external load, its direction of action, and its magnitude, contraction has been given different names.

  1. Concentric Contraction refers to the situation in the muscle when the muscle shortens its length during contraction: at a joint the term describes the situation in which the net muscle movement is in the same direction as the change in joint angle. Utilizing concentric exercises, mechanical work is positive.

  2. In Eccentric Contraction muscle is lengthened while it is contracting. The net muscle movement is now in the opposite direction from the change in the joint angle. In eccentric exercises mechanical work is negative.

  3. Isometric Contraction refers to the condition where neither the muscle nor the joint angle changes. The corresponding mechanical work is zero.

For a muscle, eccentric contraction produces the highest tension while concentric the lowest with isometric in between.

Force-Length Relationship of the Muscle

This relationship refers to force production from the muscle depending on its initial length before contraction. According to this, the muscle produces the highest force when it starts contraction from its resting length and possibly with a small elongation. The key to the shape of the force-length curve is the changes of the structure of the myofibril at the sarcomere level (Gordon et. al., 1966). At resting length, there are a maximum number of cross-bridges between the filaments, and therefore, maximum tension is possible. As the muscle lengthens the filaments are pulled apart and the number of cross-bridges and the tension reduces to zero. As the muscle shortens to less than resting length there is an overlapping of the cross-bridges and an interference takes place. This results in a reduction of tension that continues until a full overlap occurs. The tension never drops to zero, but is drastically reduced by these interfering elements.


In the human body the starting length of the muscle is effected by the joint angles. When the joint is in full extension, the extensors are shortened while the flexors are extended. Intermediate joint angles produce different muscle lengths and different force production according to force- length relationship. This has an effect on resistance training programs especially when free weights are used.
The connective tissue that surrounds the contractile element also influences the force- length curve. It is called the parallel elastic component, and it acts much like an elastic band. When the muscle is at resting length or less, the parallel elastic component is in a slack state with no tension. As the muscle lengthens, the parallel element is no longer loose, so tension begins to build up, slowly at first, and then more rapidly. Unlike most springs, which have a linear force- length relationship, the parallel element is quite nonlinear. The passive force of the parallel element is always present, but the amount of active tension in the contractile element at any given length is under voluntary control. Thus the overall force-Iength characteristics is a function of percent of excitation. 

Series Elastic Element and Electromechanical Delay

The relative speed of elongation of the series elastic element seems to be the most important factor for the electromechanical delay observed in the muscle. It is defined as the time lag between the onset of electromyographic activity and tension in the muscle. Other factors associated with electromechanical delay are conduction of the action potential in the t-tubulus system, release of calcium from the sarcoplasmic reticu- lum and the subsequent formation of the cross- bridges between actin and myosin filaments. These events are likely to be short when com- pared to the rate of lengthening of the series elastic element, which might be the primary cause for the value of electromechanical delay in a given muscle.

In isometric contraction the force is generated through the action of contractile element on the series elastic element, which is stretched (Braun- wald et. al., 1967). Concentric contraction, where the load is attached to the end of the muscle, is always preceded by an isometric type of contraction with rearrangements of lengths of contractile and series elastic elements. The final movement begins when the pulling force of contractile element on the series elastic element equals, or slightly exceeds, that of the load.

Electromechanical delay is shorter during eccentric contraction in comparison to concentric (Komi, 1973; Komi and Cavanagh, 1977). This can partially be explained by the fact that during eccentric contraction the direction of lengthening of series elastic element is the same with the action of the contractile element. The reverse is the case for concentric contraction. This is also one of the factors for greater tension production with eccentric contraction.

Force-Velocity Relationship of the Muscle

This relationship refers to force production from the muscle according its speed of contraction. The tension in a muscle decreases as it shortens under load (concentric contraction) while the reverse is true in eccentric contraction (muscle lengthens under load).

During concentric contraction, the decrease of tension as the shortening velocity increases has been attributed to two main causes:

Such viscosity requires internal force to overcome and therefore results in a lower tendon force. There is relatively little knowledge about the details of the force-velocity curve as the muscle lengthens (eccentric contraction). Experimentally, it is somewhat more difficult to conduct experiments involving eccentric work because an external device must be available to do the work on the human muscle. The reasons given for the forces increasing as the velocity of lengthening increases are similar to those that account for the drop of tension during concentric contractions. Within the contractile element it is understood that the force required to break the cross-bridges protein links is greater than that required to hold it at its isometric length, and that this force in- creases as the rate of breaking increases. Furthermore, the viscous friction of shortening is still very much present. However, because the direction of shortening has reversed, the tendon force must now be higher in order to overcome the damping friction. 

Specific Adaptation to Resistance Training

Most of the studies exploring this area use isokinetic contraction. One of the unique features of isokinetic training is that the speed of movement may be controlled during the exercise. This is perhaps the most important feature of isokinetic training as related to sports training since, in most sports activities, muscular force is applied during movement at various speeds. The force-velocity relationship is shifted upward and to the right in athletes, particularly those whose muscles contain a high percentage of fast twitch fibers. In view of the fact that fiber type distribution cannot be changed through training, studies try to answer the question if the force-velocity curve can be shifted upward and to the right following isokinetic resistance training.

The results of these studies present the following conclusions:

Following the above conclusions, specific needs can be tackled accordingly. However, in order to shift the entire curve, fast-speed isokinetic training must be used.

References

Bergstrom, J. (1962) Muscle Electrolytes in Man, Scandinavian Journal of Clinical Laboratory Investigation, Suppl. 68

Braunwald, E., J. Ross and E. H. Sonnenblick (1967) Mechanisms of Contraction of Normal and Failing Heart, New England Journal of Medicine, 277: 853-863

Burke, R. E. and V. R. Edgerton (1975) Motor Unit Properties and Selective Involvement in Movement, Exer. Sports Science Review; 3: 31-81

Di Prampero, P .E. (1985) Metabolic and Circulatory Limitations to VO2max at the Whole Animal Level, Journal of Experimental Biology, 115, 319-332

Ehashi S. (1980) Regulation of Muscle Contraction, Procedures of the Royal Society B ., 207, 259-286

Edman, K.A.P. (1988) Double- Hyperbolic Force -Velocity Relation in Frog Muscle Fibers, Journal of Physiology, 404, 301-321

Frost, H.M. (1973) Orthopaedic Biomechanics, Charles C. Thomas, Springfield, IL

Gordon, A.M., A.F. Huxley and F. J. Julian (1966) The Variation in Isometric Tension with Sarcomere Length in Vertegrate Muscle Fibers, Journal of Physiology, 184: 170

Henneman, E. (1974) Organization of the Spinal Cord, Medical Physiology, Ed. by Y.B. Mountcastle, 13th ed., Vol. 1, C.Y. Mosby, St. Louis

Hanson, J. and Huxley, H.E. (1953) The Structural Basis of the Cross-Striations in Muscle, Nature, 172, 530-2

Hasselback, W. (1953) Elektrommikroskopische Untersuchungen and Juske!flbrillen beitota!er und partieller Extraktion des L-Myosins, Zeitschrift fur Naturforschung, 8b, 449-54

Hill, A.V. (1938) The Heat of Shortening and the Dynamic Constants of Muscle, Proc. R. Sac. Land., 126B: 136-195

Huxley, A.F. (1953) Electron-microscope Studies of the Organization of the Filaments in Striated Muscle, Biochimica et Biophysica Acta, 12, 387

Huxley, H.E. and Hanson, J. (1954) Changes in the Cross-striations of Muscle During Contraction and Stretch and their Structural Interpretation, Nature, 173, 973-7

Huxley, A.F. (1974) Muscular Contraction, Journal of Physiology (London), 243: 1-43

Ikai, M. and Fukunaga T. (1968) Calculation of Muscle Strength Per Unit Cross-sectional Area of Human Muscle by Means of Ultrasonic Measurement, Int. Z. angew, Physiology, 26, 26-32

Ikai, M. and Fukunaga T. (1970) A Study of Training Effect on Strength Per Unit Cross-sectional of Muscle by Means of Ultrasonic Measurement, Int. Z. angew, Physiology, 28, 173-180

Komi, P. V. (1973) Measurement of the Force-Velocity Relationship in Human Muscle Under Concentric and Eccentric Contractions, Biomechanics III, Ed. by S. Cergniglini, Karger, Basel, 224-229

Komi, P.V. and P.R. Cavanagh (1977) Electromechanical Delay in Human Skeletal Muscle, Med. Sci. Sports, 9: 49

Komi, P.V. (1979) Neuromuscular Performance: Factors Influencing Force and Speed Production, Scand. J. Sci., 1: 2-15

Milner-Brown, H.S., R. B. Stein and R. Yemm (1973) The Orderly Recruitment of Human Motor Units During Voluntary Isometric Contractions, J. Physiol. ,230: 359- 370

Milner-Brown, H.S. and R. B. Stein (1975) The Relation Between the Surface Electromyogram and Muscular Force, J. Physiol. , 246: 549-569

Morris, C.B. (1949) The Measurement of the Strength of Muscle Relative to its Cross Section, Res. a." 20,295- 303

Norman, R.W. (1977) The Use of Electromyography in the Calculation of Dynamic Joint Torque, (Doct. thesis), Pennsylvania State University, State College, P.A.

Perrine, J.J. and V.R. Edgerton (1978) Muscle Force-Velocity and Power-Velocity Relationships Under Isokinetic Loading, Med. Sci. Sports, 10(3): 159-166

Singh, M. and P.V. Karpovich (1966) Isotomic and Isometric Forces of Forearm Flexors and Extensors, J. Appl. Physiol., 21: 1435

Thorstensson, A., Grimby and J. Karlsson (1976) Force- Velocity Relations and Fiber composition in Human Knee Extensor Muscles, J. Appl. Physiol., 40 (1 ): 12-16

Tricker, R.A.R. and Tricker, B.J.K (1967) The Science of Movement, Mills and Boon, London

Warmolts. J.R. and W.K. Engel (1973) Correlation of Motor Unit Behaviour with Histochemical Myofiber Type in Human by Open-Biopsy Electromyography, New Developments in Electromyography and Clinical Neurophysiology, Ed. by J.E. Desmedt, Voi. 1., Karger , Base!

Wilkie, D.R. (1950) The Relation Between Force and Velocity in Human Muscle, J. Physiol. , 110: 249-280

Sunday
Jul242011

Strength Assessment

By: Matt Brzycki.
From: Coachr.

Brzycki is the coordinator of health, fitness, strength and conditioning programs at Princeton University. He has authored three books, co-authored another and written more than 180 articles on strength and fitness for 33 different publications.

Strength tests are used for a variety of populations, from professional athletes to recreational fitness enthusiasts. The main reasons for performing strength tests are to evaluate initial strength levels and to assess changes in strength. Regardless of the reason for testing muscular strength, trainers and other staff need to perform testing in a safe, efficient manner. Examined here are some traditional forms of strength testing, as well as some alternate ways to test to ensure accuracy and the test's safety.

The history of strength assessments

Strength tests and measurements began in the U.S. around 1860. At that time, the major focus was on anthropometric measurements, such as size and symmetry. Around 1880, physical testing shifted from anatomical proportions to muscular strength. Then, in the 1920s, new and more scientific test methods were developed, and statistical techniques for data analysis became available. Through the years, a few specific types of strength tests have become the most popular. 

Traditional 1-RM testing requires skill, proper warm-up, instruction, supervision and practice.

Traditional test methods

Two basic types of strength tests have evolved: static and dynamic. In a static (or isometric) test, a muscle exerts tension against a fixed, nonmoving resistance. In a dynamic (or isotonic) test, one or more body parts moves against a resistance.

Strength testing has gradually become more sophisticated. Now tests can be conducted in a formal, scientific setting - such as a laboratory or sports medicine facility with equipment ranging from relatively simple dynamometers and tensiometers to more elaborate isokinetic and motor- driven testing devices. Some equipment can even provide both static and dynamic tests that measure strength at different joint angles over a full range of motion, and then plot a "strength curve" with an incredible degree of accuracy. Unfortunately, such scientific testing can be expensive and involves a considerable amount of time. In addition, sophisticated scientific tests are usually not practical to assess a large number of individuals.

Fortunately, there is a more convenient way to assess muscular strength without the drawbacks of elaborate scientific testing. Since these easier assessments are performed outside of a formal scientific setting, they are referred to as "field tests." Field tests represent simple, convenient, easy-to-administer methods of measurement that require a minimum amount of time, cost and equipment. For these reasons, many strength and fitness professionals rely on field tests to assess muscular strength.

The most popular (and traditional) way to assess dynamic strength is to determine how much weight an individual can lift for one repetition. A one-repetition maximum (1- RM) is usually performed using three or four exercises that are representative of the body's major muscle groups. For example, a bench press or an incline press is typically used to assess the strength of the chest, shoulders and triceps, while a squat or a leg press is often used to measure the strength of the hips and legs.

Traditional 1-RM testing

The traditional way to test strength using a 1-RM raises a number of concerns. One reservation is that performing a 1-RM is a highly specialized skill, requiring proper warm-up, instruction, supervision and practice.1 In addition, traditional1-RM testing can be time-consuming, due to the number of warm-up sets that are required to prepare for the maximal attempt. These problems are magnified when evaluating a large group of people. 1,2 

Another concern with traditional1-RM testing is an increased risk of musculoskeletal injury.l,2,3,4 Attempting a 1-RM with a maximal or near-maximal weight can place an inordinate amount of stress on muscles, bones and connective tissues. Injuries occur when the stress exceeds the tensile strength of these structural components. The concern for safety increases when testing certain populations, such as younger adolescents and older adults who are at greater risk for orthopedic injury.1

Fitness professionals must identify a means to assess the muscular strength of their clients that is safe and efficient, but also inexpensive, practical and reasonably accurate.

Strength and anaerobic endurance

To discuss alternate ways to test strength, it's necessary to distinguish between strength and anaerobic endurance. In basic terms, strength is the ability to exert force, and maximal strength is a measure of the ability to exert force during a single muscular contraction with a maximal load. In contrast, anaerobic endurance is the ability to exert force during successive muscular contractions with a submaximal load. It is important not to confuse anaerobic endurance with cardiovascular endurance. Anaerobic endurance is a short-term, high-intensity muscular effort---less than about two minutes; cardiovascular endurance involves muscular effort for a much longer duration. 

Strength and anaerobic endurance are highly related.4 A review of strength-training literature indicates that there is a direct relationship between reps-to-fatigue and the percentage of maximal load (or weight): As the percentage of maximal load increases, the number of repetitions decreases in an almost linear fashion.5

Data also suggests that 10 reps-to-fatigue could be performed with a weight equal to approximately 75 percent of a maximal load.5 For example, if your 1-RM is 200 pounds, then you should be able to perform 10 reps-to-fatigue with 150 pounds (75 percent of 200). Expressed in other terms, if your maximal strength is 200 pounds, then a measure of your anaerobic endurance is your ability to perform 10 repetitions with 150 pounds before experiencing muscular fatigue. This would also be known as your 10-repetition maximum (10-RM).

Unless you have an injury or other musculoskeletal disorder, the relationship between your muscular strength and your anaerobic endurance remains relatively constant.4 Therefore, regardless of whether your strength increases or decreases, you should always be able to perform the same number of repetitions with a given percentage of your 1-RM. This also suggests that if you improve your 1-RM by 20 percent, then your 10-RM should also improve by 20 percent. Conversely, if you increase your anaerobic endurance, then you also increase your muscular strength. So, if you improve your 10-RM by 20 percent, then your 1-RM should also improve by 20 percent. Keep in mind, however, that the actual improvement in a 1-RM may be less if you haven't practiced the requisite skill in performing a 1-RM.

Implications for testing

Since there is a direct relationship between anaerobic endurance and strength, you can determine anaerobic endurance by measuring strength, and determine strength by measuring anaerobic endurance. Though it doesn't directly measure pure maximal strength, testing anaerobic endurance is much safer than attempting a 1-RM because it involves submaximal loads.

A number of prediction equations have been developed and used to estimate a 1-RM based on the relationship between strength and anaerobic endurance. While some of the equations have proven to be reasonably accurate, one problem with them is that they do not take into consideration individual differences.2,3

Genetic influences on testing Each individual inherits a different potential for improving muscular size and strength, cardiovascular' endurance, anaerobic endurance and other physical attributes. Indeed, a person's physical profile is largely determined by several inherited characteristics, including the ratio of fast-twitch (FT) to slow-twitch (ST) muscle fibers, limb length and neurological ability.

Because of these genetic influences, especially muscle fibers, some people perform either less than or more than 10 reps-to-fatigue with 75 percent of their maximal strength. Westcott reported data on 141 subjects who did a test of anaerobic endurance with 75 percent of their 1-RM.6 (Remember, it has been suggested that an individual could do 10 reps-to-fatigue with this workload.) According to the data, the subjects completed an average of 10.5 repetitions. However, only 16 of the 141 subjects (11.35 percent) did exactly 10 reps-to-fatigue with 75 percent of their 1-RM. Many of the subjects were within a few repetitions of 10. In fact, 66 of the subjects (46.81 percent) were able to do between eight and 13 reps-to-fatigue. On the other hand, 75 of the subjects (53.19 percent) did either less than eight reps-to-fatigue or more than 13. At the extremes, two subjects did only five reps-to-fatigue and one managed 24.

If predicting a 1-RM from reps-to-fatigue is to be as accurate as possible, individual differences in anaerobic endurance must be considered. There are several ways to determine an individual-specific estimate of a 1-RM.

1-RM and anaerobic endurance tests.

One way to obtain an individual-specific estimate of a 1-RM is to perform actual tests of muscular strength and anaerobic endurance. To do this, first determine the maximal weight that you can lift for one repetition using good technique. Next, assess your anaerobic endurance by taking 75 percent of your 1-RM and performing as many repetitions as possible using good technique. For instance, if your 1-RM is 200 pounds, do a set with 150 pounds (75 percent of 200). Suppose that you are able to do eight reps-to-fatigue with 75 percent of your 1- RM (instead of 10 reps-to-fatigue as has been suggested). You have just established an individual-specific relationship between your strength and anaerobic endurance based upon your inherited characteristics. More specifically, you now know that you can do eight reps-to-fatigue with 75 percent of your 1-RM. In the future, you can estimate your 1-RM based upon your inherited characteristics by dividing the most weight you can lift for eight repetitions by 0.75.

A two-set prediction equation.

Another approach to attain an individual-specific estimate of a 1-RM is to use a prediction equation. The most frequently used prediction equations are based on the reps-to-fatigue done in one set.2,3 However, a test using one set does not account for individual differences in anaerobic endurance. A better way to assess muscular strength from anaerobic endurance is to use a prediction equation that is based on the reps-to-fatigue obtained in two sets. A two-set prediction equation is shown in Figure 1.

To illustrate the equation, guesstimate a weight that will allow you to reach muscular fatigue in approximately four or five repetitions. On a later date, guesstimate a weight that will allow you to reach muscular fatigue in approximately nine or 10 repetitions. It doesn't really matter how many repetitions you do in the two sets, as long as you do not exceed 10. Now, suppose that you did five reps with 165 pounds in the first set and 10 reps with 135 pounds in the subsequent set. Inserting these values into the equation yields an individual-specific predicted 1-RM of 189 pounds.

l-RM graphing method

A final way to make an individual-specific estimate of a 1-RM is to use a graph and plot the reps-to-fatigue obtained in two sets. On a sheet of graph paper, draw a vertical line down the left-hand side of the page. Starting at the bottom of this vertical line, draw a horizontal line across the page. Label the vertical line "weight" and mark off five- or 10-pound increments; label the horizontal line "reps-to-fatigue" and mark off 10 increments, numbering them from one to 10. The intervals between the numbers on both lines must be equidistant.

Once the graph is set up, perform two sets with the same guidelines as previously stated. On the graph, plot the weight that you used and the number of reps-to-fatigue that you did in both sets. Using a ruler, connect these two points and extend this line to the left until it intersects the vertical line that designates one repetition. This extrapolation is an individual-specific estimate of your 1-RM.

An application of the graphing method appears in Figure 2. In this instance, consider again that you did 5 reps with 165 pounds and 10 reps with 135 pounds. When these two points are plotted on the graph and the line is extrapolated to the left, it yields a predicted 1-RM of 189 pounds---the same maximum that was estimated by the two-set prediction equation.

Implications for training

There is not currently any consensus on the percentage of maximal weight that is necessary to stimulate optimal gains in strength. For the moment, however, imagine that it is 75 percent. According to the study by Westcott, this workload appears to allow an average of about 10 reps-to-fatigue.6 Recall, though, that his data also showed that many individuals can do either less than or more than 10 reps-to-fatigue. These individual differences in anaerobic endurance suggest the need to customize repetition ranges to maximize the response to strength training. For example, those who cannot do more than 10 reps-to-fatigue with 75 percent of their 1-RM have a relatively low level of anaerobic endurance (and likely a high percentage of fast-twitch muscle fibers). These individuals would benefit more by training with slightly lower repetition ranges. Conversely, those who can do more than 10 reps-to-fatigue with 75 percent of their 1-RM have a relatively high level of anaerobic endurance (and likely a high percentage of slow-twitch muscle fibers). These individuals would benefit more by training with slightly higher repetition ranges. This is not to say that 75 percent is the optimal workload for stimulating increases in strength. The use of 75 percent of a 1-RM is only to illustrate the point about the need for individualized repetition ranges. 

There are also implications for pre-planned or "periodized" workouts that demand specific numbers of repetitions with certain percentages of a 1-RM. For instance, a workout might requite individuals to perform 10 repetitions with 75 percent of their 1-RM. Because of wide variations in anaerobic endurance, however, such a prescription might be far too easy for some and literally impossible for others. Therefore, pre-planned workout schedules that stipulate the same number of repetitions with a specific percentage of maximal load for everyone may be minimally effective, except for the segment of the population who have a particular level of anaerobic endurance that corresponds exactly to the specifications and parameters of the training prescription. 

REFERENCES 

1. LeSuer, D., andJ. McCormick. An alternative to 1 RM strength testing. Unpublished paper, 1993. 

2. Ware, J ., et al. Muscular endurance repetitions to predict bench press and squat strength in college football players. Journal of Strength and Conditioning Research 9: 99-103, 1995.

3. Mayhew, J., J. Prinster, J. Ware, et al. Muscular endurance repeti- tions to predict bench press strength in men of different train- ing levels. Journal of Sports Medidne and Physical Fitness 35: 108-113, 1995. 

4. Carpinelli, R.N. How much can you bench press? High Intensity Training Newsletter 5: 2-3, 1994. 

5. Sale, D.G., and D. MacDougall. Specifidty in strength training: A review for the coach and athlete. Canadian Journal of Applied Sport Sdences 6: 87-92, 1981.

6. Westcott, W. Building Strength and Stamina. Human Kinetics: Champaign, Ill., 1996.

 

 

 

Saturday
Jul232011

A Lightweight Rower's Diet

By: Patrick Dale.
From: Live Strong: Lance Armstrong Foundation.

Overview: A lightweight Rower's Diet

Rowing is a relatively old sport whose governing body, the International Rowing Federation, was formed in 1892. Rowers compete individually or in crews of two, four or eight and are categorized by weight: Lightweight men must weigh less than 72.5 kg or 160 lbs. while lightweight women must weigh less than 59 kg or 130 lbs. Rowers weighing more than these figures are classed as heavyweights. Lightweight rowers must be careful not to gain too much weight otherwise they will find themselves ineligible for lightweight competition. For this reason, diet is especially important for lightweight rowers.

About Rowing

Rowing is a demanding whole-body sport that requires strength, power and fitness. The legs, back and arms are especially important in rowing. Rowing with one oar is called sweep rowing while using two oars is called sculling. Both types of rowing require very high levels of fitness. Training for rowing is vigorous and includes not just rowing but also weight training, circuit training and running or cycling. According to "The Sports Book" by Ray Stubbs, rowers consume an average of 6,000 calories per day to fuel their training, but this very much depends on the size of the rower and amount of training being performed. 

About Rowing

Rowing is a demanding whole-body sport that requires strength, power and fitness. The legs, back and arms are especially important in rowing. Rowing with one oar is called sweep rowing while using two oars is called sculling. Both types of rowing require very high levels of fitness. Training for rowing is vigorous and includes not just rowing but also weight training, circuit training and running or cycling. According to "The Sports Book" by Ray Stubbs, rowers consume an average of 6,000 calories per day to fuel their training, but this very much depends on the size of the rower and amount of training being performed.

Fueling Workouts

The primary fuel in rowing workouts is carbohydrate. Carbohydrate from foods such as bread, rice, pasta, fruit and vegetables is broken down and converted to glucose to provide energy for muscular contractions. Hard-training rowers should ensure they consume enough carbohydrates to fuel their rigorous workouts. Sports nutritionist and author Anita Bean recommends that hard-training rowers should consume 8 to 10 g of carbohydrate per kilogram of body weight. Carbohydrates also provide plenty of vitamins, minerals and fiber, so rowers should try to eat wholesome sources of carbohydrates while limiting the consumption of refined foods and sugars. 

Muscle Repair

Rowing and rowing training cause muscle damage at a cellular level. With adequate rest and good nutrition, muscles repair themselves and get stronger. The primary nutrient required for post exercise muscle repair is protein. Rowers should consume around 1.2 to 1.6 g of protein per kilogram of body weight to ensure they have adequate protein to repair their muscles after intense exercise. Good protein foods include beef, pork, chicken, turkey, fish and eggs. Protein consumption should be spread evenly throughout the day to ensure muscles receive a regular supply of protein-derived amino acids.

Fats

Although fats are very calorie dense, they are also important for health. Fats are essential for the transportation and utilization of vitamins and minerals, are anti-inflammatory and a useful source of energy. Because fat provides a lot of calories, lightweight rowers should be careful not to consume too much fat in order to avoid gaining weight. Most experts agree that around 30 percent of calories should be derived from fat and split evenly among saturated, monounsaturated and polyunsaturated fat.

Weight Management

Unlike heavyweight rowers who have no upper weight limit, lightweight rowers much avoid getting too heavy - especially as the competitive season approaches. To maintain your body weight, your calorie intake must equal your calorie expenditure. If you are over your correct rowing weight, you should endeavor to start your weight-loss diet in plenty of time before the season to avoid having to crash diet which may affect your rowing training due to reduced energy levels. By setting the goal of 1 lb. per week, you can estimate how long it will take you to get to your correct competitive weight. To lose 1 lb. a week, you need to reduce your calorie intake by around 500 calories a day.

References

"The Sports Book"; Ray Stubbs; 2009

"The Complete Guide to Sports Nutrition"; Anita Bean; 2009 

"Nancy Clark's Sports Nutrition Guidebook"; Nancy Clark; 2008

Saturday
Jul232011

Fuelling Rowers

By: Jennifer Doane.
From: American Dietetic Association. Copyright ©2006: This handout may be duplicated.
PDF Link: Fuelling Rowers

Fuelling Your Sport

• The number of calories needed by rowers depends on the intensity of training. Recreational rowers need fewer calories than competitive rowers.

• When training is very intense and lasts a long time, rowers can need 20.5 to 21.5 calories per pound of body weight per day (45 to 47 calories/kg/day). Male heavyweight rowers may need more than 6,000 calories per day, and female heavyweight rowers need at least 3,000 calories each day.

• When rowers improve their stroke, they don’t use as much energy. Therefore, they may need to eat fewer calories than they did when they were beginners.

• Carbohydrate is the most important fuel for rowers, but some rowers don’t get enough. You need 2.3 to 3.2 grams of carbohydrate per pound of body weight per day (5 to 7 g/kg/day) during training and competition. During training, you should aim for the higher end of the range (3.2 grams/pound/day). Good sources of carbohydrate include whole grain breads and cereals, fruits, and vegetables.

• Rowers need 0.55 to 0.8 grams of protein per pound of body weight per day (1.2 to 1.7 g/kg/day). You need the most protein during the early phases of training. Good sources of protein include fish, chicken, turkey, beef, low-fat milk, cheese, yogurt, eggs, nuts, and soy.

• Eat about 0.45 grams of fat per pound of body weight per day (1 g/kg/day). Choose heart-healthy fats, such as canola oil, olive oil, and nuts.

Fluid Needs

• When you compete in a weight class, you may think about using dehydration practices to make weight at the last minute. However, practices such as working out in a rubber suit in a sauna, limiting fluids, vomiting, and taking diuretics are very dangerous. They can lead to serious health problems or diminish your performance.

• Try to make weight well before the start of the competitive season. To get to a competitive weight, focus on eating less, not fluid restriction.

• Two hours before every workout and competition, drink 2 cups of fluids.

• Drink about 3 cups of fluid for each pound lost during training or competition.

• One way to know if you are drinking enough is to monitor your urine colour. Urine will have a pale, straw colour when you are hydrated.

• Use sport drinks to get fluids, carbohydrates, and electrolytes that your body loses when you’re active.

Supplements Commonly Used by Rowers

• Creatine may increase performance in 1,000-meter rowing events.

• Creatine supplementation may also help you recover more quickly from weight training sessions, which could help you train harder.

• Creatine monohydrate powder is a common type of creatine supplement. The recommended dose is 3 to 5 grams per day. Taking larger amounts does not give you added benefits.

Creatine is not recommended for athletes younger than 18 years because it is not known whether creatine is safe for this age group.

• Energy bars are a convenient way to get more calories and nutrients. Choose an energy bar that contains more carbohydrate than protein or fat. Many energy bars do not taste very good, so find a bar you like to eat. Bars are more expensive than other food, and they don’t contain any magical ingredients to improve performance.

 

Top Three Nutrition Tips to Improve Performance

1. Manage your weight in the off-season instead of cutting weight in-season. A sports dietician can create an eating plan that allows you to make your desired weight well before the season starts. Some athletes have unrealistic goals for body composition. A sports dietician can help you determine whether your goals are realistic.

2. Develop a hydration plan along with your training plan. Dehydration hurts performance and increases the risk for heat illness. Choose sport drinks when rowing on hot, humid days. Drink 2 cups of fluid 2 hours before exercise and drink plenty of fluids after your workout.

3. If you want to gain weight, plan ahead.

Heavyweight rowers often want to gain weight in a short time period, but healthy weight gain, like weight loss, will not happen in a day or two. If you want to gain weight, increase your calories by 500 to 700 per day. If you use high-calorie and high-protein liquid meals, use them between meals or before bed for best results.

 

Nutrition Prescription:

______ calories per day

______ grams of carbohydrate per day

______ grams of protein per day

______ grams of fat per day

______ cups of fluid per day

Special concerns:

Saturday
Jul232011

Periodization: Latest Studies and Practical Applications

By: Christopher C. Frankel and Len Kravitz, Ph.D.
From: UDM Aticles.

Introduction

Periodization is an organized approach to training that involves progressive cycling of various aspects of a training program during a specific period of time. The roots of periodization come from Hans Selye’s model, known as the General Adaptation Syndrome, which has been used by the athletic community since the late 1950s (Fleck, 1999). Selye identified a source of biological stress referred to as eustress, which denotes beneficial muscular strength and growth, and a distress state, which is stress that can lead to tissue damage, disease, and death. Periodization is most widely used in resistance program design to avoid over-training and to systematically alternate high loads of training with decreased loading phases to improve components of muscular fitness (e.g. strength, strength-speed, and strength-endurance). This system of training is typically divided up into three types of cycles: microcycle, mesocycle, and macrocycle. The microcycle is generally up to 7 days. The mesocycle may be anywhere from 2 weeks to a few months and can further be classified into preparation, competition, peaking, and transition phases. The macrocycle refers to the overall training period, usually representing a year. This article will discuss the efficacy of periodization and present some of the current issues from recent research.

Theory and Research

The research has focused primarily on the variation in training volume (total repetitions per workout or total repetitions x mass lifted) and exercise intensity (%1RM). While the underlying mechanisms that explain the differences between periodized and non-periodized programs remains to be fully investigated and explained (Fleck 1999), the effects on neural adaptations and the avoidance of overtraining are suggested as possible factors (Fleck 1999, Stone 1999 a & b).

Most comparative studies have demonstrated the superiority of periodized over non-periodized programs in terms of greater changes in strength, body composition, and motor performance (Fleck 1999).

In these investigations, programs were evaluated based on changes in strength and/or power-related measures such as 1 RM bench, 1 RM squat,vertical jump power and height, and cycling sprint performance. The studies ranged in duration from seven to 24 weeks. When summarized, these studies demonstrate that even over a relatively short period of time (the length of a mesocycle), significantly greater improvements can be realized using systematic variation in training volume and intensity compared to linear programs using constant sets and reps (i.e., 3 sets of 10 repetitions).
In two separate studies, groups using a one-set-to-failure program were compared to other groups using periodized training principals.

Both methods resulted in improvements in strength and power measures over the training period. However, the periodized groups demonstrated significantly greater increases than did subjects in the single set groups (Fleck 1999). An obvious concern in the interpretation of these results is the greater amount of training volume (reps, sets, and total mass lifted) in the periodized programs, which may account for the differences in performance gains between the groups. However, these findings may furnish evidence for the use of periodized, multiple set, programs over single set programs, which continues to be an ongoing debate among fitness professionals.

To address the influence of overall training volume, multiple set linear programs (constant reps and sets) have been compared to periodized programs (decreased volume-increased intensity with time). In the majority of cases, periodization based programs still provided significantly greater improvements in performance measures (Fleck 1999, Stone 1999a, Stone 1999b). Therefore, there is evidence to support the idea that appropriate manipulation of volume and intensity, over and above just increases in total training volume alone, is an important factor in optimizing strength training effects.

Periodization, Variation, Periodization Models

Periodization, as it has been defined, refers to specific methods of manipulating training variables to provide variation in volume and intensity. While variation itself may play an important role in optimizing strength-related improvements, not all programs that include a variation component will provide similar results (Stone 1999a). In other words, random variations in training variables may not produce the desired results, lending credence to the adage "Fail to plan—plan to fail."

Traditional models of periodization describes a progression from high volume and low-intensity work towards decreasing volume and increasing intensity during the different cycles. Other periodization programs have been developed and have potential advantages over non-periodized approaches. A reduction in volume and an increase in intensity in steps during the training cycle is referred to as stepwise periodization. In the overreaching periodization model there is periodic short term (1-2 week) increase in volume or intensity followed by a return to normal training (Stone 1999b). During undulating periodization, training volume and intensity are increased and decreased on a regular basis, but not in the general pattern of always increasing intensity and decreasing volume as the training period progresses (Fleck 1999).

Practical Considerations

Coaches and athletes have long been aware of the benefit of changing the training stimulus at regular, or even irregular intervals. Tapering training volume prior to competition, planned periods of active rest, and interspersing power and strength workouts to challenge different energy systems are all attempts to exploit the General Adaptation Syndrome. In the "black box" model of performance are qualitative variables such as motivation, adherence, and compliance which not be underestimated as determining factors in the success of any program. For instance, Stone et al. (1999b) describe that the attrition and noncompliance rate of their constant reps group was attributable to the monotony and boredom of this type of training. There may be psychological factors that additionally influence the quality and quantity of work performed during training.While the body of research pertaining to periodization focuses on the effect of varying volume and exercise intensity, it should be clear that these are not the only variables that determine training adaptations.

Other influential components of any program include

  1. choice of exercises
  2. order of exercises
  3. resistance or load
  4. number of sets per exercise
  5. number of exercises per muscle group
  6. repetition range
  7. type of contraction
  8. speed of movement
  9. rest periods between sets
  10. rest periods between training sessions, and
  11. nutritional status.

Further research remains to be conducted and evaluated. However, for more advanced resistance training designs, the evidence appears to strongly suggest utilizing a periodized approach as compared to constant repetition/set type programs.

TRAINING MODELS

NONPERIODIZED MODELS
Linear: Volume (reps x sets) remains constant during training period. Intensity increases with load progression.

Random Variation: Volume and/or intensity change randomly, with no consideration other than to introduce variation into the program.

PERIODIZED MODELS
Traditional: Volume and intensity are systematically manipulated. Training cycle begins with a high-volume, low-intensity profile, then progresses to low volume, high intensity over time.

Step wise: Like the traditional model, intensity increases and volume decreases during the training period. Volume is decreased during the training period. Volume is decreased in a stepwise fashion: Repetitions are reduced from eight to five, five to three, and so forth, at specific time intervals.

Undulating: Training volume and intensity increase and decrease on a regular basis: but they do not follow the traditional pattern of increasing intensity and decreasing volume as the mesocycle progresses (Fleck 1999).

Overreaching: Volume or intensity is increased for a short period of time (one to two weeks), followed by a return to "normal" training. This method is use primarily with advanced strength trained athletes.

Sample Periodization Model by Muscle Fiber Type

Articles Reviewed:

Fleck, S. J. (1999). Periodized strength training: A critical review. Journal of Strength and Conditioning Research, 13, 82-89.

Stone, M. H., O’Bryant, H. S., Schilling, B. K., Johnson, R. L., Pierce, K.C., Haff, G. G., and Stone, M. (1999). Periodization: Effects of manipulating volume and intensity. Part 2. Strength and Conditioning Journal, 21(3), 54-60.

Stone, M. H., O’Bryant, H. S., Schilling, B. K., Johnson, R. L., Pierce, K.C., Haff, G. G., and Stone, M. (1999). Periodization: Effects of manipulating volume and intensity. Part 1. Strength and Conditioning Journal, 21(3), 54-60.

Friday
Jul222011

Recovery in Training: The Essential Ingredient

By: Jonathan N. Mike, M.S. and Len Kravitz, Ph.D.
From: International SportMed Journal, 2000, Volume 1, Issue 3


Introduction

Recovery from exercise training is an integral component of the overall training program and is essential for optimal performance and improvement. If rate of recovery is improved, higher training volumes and intensities are possible without the detrimental effects of overtraining (Bishop et al., 2007). While recovery from exercise is significant, personal trainers and coaches use different approaches for the recovery process for clients and athletes. Understanding the physiological concept of recovery is essential for designing optimal training programs. As well, individual variability exists within the recovery process due to training status (trained vs. untrained), factors of fatigue, and a person's ability to deal with physical, emotional, and psychological stressors (Jeffreys, 2005). This article will provide evidence-based research and practical applications on recovery for personal trainers and fitness professionals

What is Recovery?

Bishop et al. (2007) define recovery as the ability to meet or exceed performance in a particular activity. Jeffreys (2005) continues that factors of recovery include 1) normalization of physiological functions (e.g., blood pressure, cardiac cycle), 2) return to homeostasis (resting cell environment), 3) restoration of energy stores (blood glucose and muscle glycogen), and 4) replenishment of cellular energy enzymes (i.e., phosphofructokinase a key enzyme in carbohydrate metabolism). In addition, the recovery is very dependent on specific types of training (see question #1 in the Pertinent Recovery Questions for the Personal Trainer section). Recovery may include an active component (such as a post-workout walk) and/or a passive component (such as a post-workout hydrotherary treatment).

Physiology of Recovery

Muscle recovery occurs during and primarily after exercise and is characterized by continued removal of metabolic end products (e.g., lactate and hydrogen ions). During exercise, recovery is needed to reestablish intramuscular blood flow for oxygen delivery, which promotes replenishment of phosphocreatine stores (used to resynthesize ATP), restoration of intramuscular pH (acid/base balance), and regaining of muscle membrane potential (balance between sodium and potassium exchanges inside and outside of cell) (Weiss, 1991). During post-exercise recovery, there is also an increase in 'excess post-exercise oxygen consumption' (or EPOC). Other physiological functions of recovery during this phase include the return of ventilation, blood circulation and body temperature to pre-exercise levels (Borsheim and Bahr, 2003).

Types of Recovery

The most rapid form of recovery, termed “immediate recovery” occurs during exercise itself. Bishop and colleagues (2007) give an example of a race walker with 1 leg in immediate recovery during each stride. With this phase of recovery, energy regeneration occurs with the lower extremities between strides. As each leg recovers more quickly, the walker will be able to complete the striding task more efficiently.

“Short term recovery” involves recovery between sets of a given exercise or between interval work bouts. Short-term recovery is the most common form of recovery in training (Seiler, 2005). Lastly, the term “training recovery” is used to describe the recovery between workout sessions or athletic competitions (Bishop et al., 2007). If consecutive workouts occur (such as within the same day) without appropriate recovery time, the individual may be improperly prepared for the next training session.

Connection to Fatigue

Fatigue is usually perceived as any reduction in physical or mental performance. However, when discussing various aspects of training, fatigue can be described as failure to maintain the expected force, or the inability to maintain a given exercise intensity or power output level (Meeesen 2006). Bigland (1984) expands that fatigue is any exercise-induced reduction in force or power regardless of whether or not the task can be sustained.

There are two types of fatigue: peripheral and central. Peripheral fatigue during exercise is often described as impairment within the active muscle. The muscle contractile proteins are not responding to their neural stimulation. Depletion of muscle glycogen (for fuel) is thought to be an important factor in peripheral fatigue, especially during prolonged exercise (Jentjens, 2003).
Central fatigue is concerned with the descending motor pathways from the brain and spinal cord. Bishop and colleagues (2008) explain that brain messages may signal reductions or complete cessation of exercise performance. A central fatigue hypothesis suggests that the brain is acting as a protective mechanism to prevent excessive damage to the muscles.

Other Associative Factors of Recovery
Gleeson (2002) elucidates the following related factors involved in the ability of a person to recover.
1) Muscle soreness and weakness
2) Poor exercise performance
3) Decrease in appetite
4) Increased infection
5) Quality and quantity of sleep
6) Gastrointestinal abnormalities
Personal trainers should be aware that these conditions may have an adverse influence on client recovery from exercise.

Pertinent Recovery Questions for the Personal Trainer

1) How Much Rest between Sets? Willardson (2008) describes rest between sets as a multifactorial phenomenon that is affected by several factors (see Figure 1).
However, summarizing previous research, he purposes some specific rest periods (between multiple set training) for the following training protocols.
Muscular endurance training: 30 to 90 seconds
Hypertrophy training: 1 to 2 minutes
Power training: 3 minutes
Muscular strength (for clients less adapted to strength training): 4 to 5 minutes
Muscular strength (for clients well-adapted to strength training): 3 minutes

2) How much rest between sessions? The greater the stress of the workout, the greater the overall muscle recruitment, and the greater the potential for muscle damage and soreness, therefore the need for longer recovery time. Muscle recovery between resistance training sessions for most individuals is also influenced by other types of training performed, such as cardiovascular training, interval sprints and sports conditioning sessions. Rhea (2003) concluded that for untrained individuals and trained individuals a frequency of 3 and 2 days, respectively, per week per muscle group is optimal, which translates to 1-2 days rest between sessions. However, this will vary depending on total volume of resistance training, individual training status, and overall goals (e.g., training for hypertrophy, strength, endurance, etc.).

3) Is there a gender difference in recovery? A gender difference has been shown in fatigue, a factor influencing recovery. Numerous studies have shown fit women have a greater resistance to fatigue than their male counterparts; therefore, fit women are able to sustain continuous and intermittent muscle contractions at low to moderate intensities longer than physically active men (Critchfield and Kravitz, 2008).

4) Do different muscle groups need more rest? Ground based movements such as the deadlift, squat, and overhead press require more rest than smaller muscle groups such biceps, triceps, and forearm flexors. This is due to the increase in motor unit recruitment and larger muscle mass involved with these multi-joint exercises.

5) Can certain supplements aid in the recovery of training? Many supplements have been used to assist in recovery of training. Bloomer (2007) provides evidence on certain antioxidants such as Vitamin C and Vitamin E and their purported affect on attenuating muscle damage, thus enhancing the recovery of training. However, he confirms that these supplements do not eliminate muscle trauma from exercise, only minimize some of the signs and symptoms (e.g., delayed onset damage, inflammation).

6) Does massage therapy affect the recovery process? Weerapong (2005) reported that some studies have shown that massage did in fact reduce delayed onset muscle soreness, while other studies have not realized this effect. However, it should be pointed out that the psychological benefits of massage toward recovery are often quite meaningful to the exercisers.

Bottom Line Message to Trainers

For client's to achieve optimal exercise performance, the personal trainer and fitness professional needs to be proactive in planning recovery into the training program. Although there is no consensus on a central strategy for recovery, monitoring and observing a client's exercise performance will always be most insightful in adjusting and planning for this essential ingredient of training. In addition, educating clients about the importance of recovery (such as proper sleep) may empower them to complete suitable interventions to enhance the process.

Biographies

Jonathan N. Mike, MS, CSCS, NSCA-CPT, is a doctoral student in the exercise science program in the department of health, exercise, and sports sciences at the University of New Mexico (Albuquerque). He earned his undergraduate and graduate degrees in exercise science at Western Kentucky University (Bowling Green) and has research interests in strength and power performance, exercise and energy metabolism, exercise biochemistry, exercise endocrinology, and neuromuscular physiology.

Len Kravitz, PhD, is the program coordinator of exercise science and a researcher at the University of New Mexico, Albuquerque, where he won the Outstanding Teacher of the Year award. Len was honored with the 2006 Can-Fit-Pro Specialty Presenter of the Year award and chosen as the ACE 2006 Fitness Educator of the Year. He was recently presented with the 2008 Can-Fit-Pro Lifetime Achievement Award.


References:
Bigland-Ritchie B, & Woods J.J. (1984). Changes in muscle contractile
properties and neural control during human muscular fatigue. Muscle and Nerve. 7(9): 691-699.

Bishop, P.A, Jones E., & Woods A.K. (2008). Recovery from training: a brief review.
Journal of Strength and Conditioning Research., 22(3):1015-1024.

Bloomer, RJ. (2007). The role of nutritional supplements in the prevention and treatment of resistance exercise-induced skeletal muscle injury. Sports Medicine. 37(6):519-32.

Borsheim, E & Bahr, R. (2003).Effect of exercise intensity, duration and mode on post-exercise oxygen consumption. Sports Medicine. 33(14):1037-1060.

Critchfield, B. & Kravitz, L. (2008). Fatigue resistance: An intriguing difference in gender. IDEA Fitness Journal 5(6), 19-21.

Gleeson, M (2002). Biochemical and Immunological Markers of Overtraining. Journal of Sports Science and Medicine. 1: 31-41.

Hicks, A.L, Kent-Braun, J., & Ditor, D.S. (2001). Sex differences in human skeletal muscle fatigue. Exercise and Sports Sciences Reviews, 29(3), 109-12.

Jeffreys, I. (2005). A multidimensional approach to enhancing recovery. Strength and Conditioning Journal. 27(5): 78-85.

Jentjens, R, & Jeukendrup, A. (2003).Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine. 33(2):117-144.

Meeusen, R, Watson, P., Hasegawa, H, Roelands, B, & Piacentini, M.F. (2006). Central fatigue: the serotonin hypothesis and beyond. Sports Med. 36(10):881-909.

Rhea, M.R., Alvar, B.A., Burkett, L.N., & Ball S.D. (2003). A meta-analysis to determine the dose response for strength development. Medicine and Science in Sports and Exercise, 35(3):456-464.

Seiler, S. & Hetlelid, K.J. (2005). The impact of rest duration on work intensity and RPE during interval training. Medicine and Science in Sports and Exercise, 37(9):1601-1607.

Weerapong, P., Hume, P.A., & Kolt G.S.N. (2005). The mechanisms of massage and effects on performance, muscle recovery and injury prevention. Sports Medicine, 35(3):235-56.

Weiss, LW. (1991). The obtuse nature of muscular strength: The contribution of rest to its development and expression. Journal of Applied Sports Science Research. 5: 219-227.

Willardson, J.M. (2008). A brief review: How much rest between sets. Strength and Conditioning Journal, 30(3): 44-50.